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A simple analytic model is proposed which predicts the unsaturated hydraulic conductivity curves by 
using the moisture content-capillary head curve and the measured value of the hydraulic conductivity at 
saturation. It is similar to the Childs and Coilis-George (1950) model but uses a modified assumption 
concerning the hydraulic conductivity of the pore sequence in order to take into'account the effect of the 
larger pore' section. A computational method is derived for the determination of the residual water 
content and for the extrapolation of the water content-capillary head curve as measured in a limited 
range. The proposed model is compared with the existing practical models of Averjanov (1950), Wyllie 
and Gardner (1958), and Millington and Quirk (1961) on the basis of the measured data of 45 soils. It 
seems that the new model is in better agreement with observations. 

INTRODUCTION 

The various models used for predicting the hydraulic con- 
ductivity of unsaturated soils were reviewed by Brutsaert 
[1967]. We may distinguish between two main groups. The 
first is based on a generalization of Kozeny's approach for 
saturated and unsaturated porous media, according to which 
the relative hydraulic conductivity Kr is a power function of 
the effective saturation Se, i.e., 

Kr = K/K.,t = Se" (1) 

where 

& = (o - - (2) 

where O and Or are the actual and the residual water content, 
respectively. Following this approach, A verjanov [1950] pro- 
posed the value a = 3.5, whereas Irrnay [1954] derived (1) 
theoretically with a = 3.0. It seems that for a wide variety of 
soils, a = 3.5 leads to a better agreement with observations 
[Brooks and Corey, 1964; Boreli and Vachaud, 1966]. 

The second group includes the models of Burdine [1953], 
Wyllie and Gardner [1958] (WG in this paper), Farrell and 
Larson [1972], and Childs and Coilis-George [1950] (CCG in 
this pape r) and the modifications to the CCG model proposed 
by Marshall [1958], Millington and Quirk [1961] (MQ in this 
paper), and Kunze et al. [ 1968]. The models of this group make 
use of the measured capillary head-water content •(O) curve 
to derive the hydraulic conductivity in the unsaturated state. 
While in petroleum engineering the 'Burdine equation' 

K,(O ) $• dO/•P • dO/•p • (3) 
•0 •0 

' 0=O--O• 

is commonly used, soil scientists refer generally to a modified 
form of the CCG equation, 

K,(O•) 

= S,t• • [2.(/-- i)+ 1] /• [2(m --i)+ 11 
Here rn represents the total number of intervals into which the 
0 domain is divided, and l is the number of intervals up to a 
prescribed value of 0. CCG, MQ, and Kunze et al. suggest • = 
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0, •, and l, respectively. Jackson et al. [1965], Kunze et al. 
[1968], Green and Corey [1971 ], and Bruce [1972] have checked 
the reliability of (4). It seems that the MQ formula is in 
somewhat better agreement with measured data than the other 
formulae. 

The three main models represented by (1), (3), and (4) do 
not seem to have been tested together against measured data 
before. 

The purpose of the present study is to propose a new sim- 
plified model which minimizes the deviations between pre- 
dicted and measured K(O) curves. 

THEORY 

We consider a homogeneous porous medium, having inter- 
connected pores defined by their radius r. The contribution of 
full pores of radii r -• r + dr to 0 is 

f(r) dr = dO (5) 

where f(r) is the pore water distribution function. We have 

f•n l(r) dr = O(R) (6) rain 

and in particular, 

f,••m.x l(r) dr = 0,•, (7) rain 

The areal porosity is equal here to the volumetric porosity, so 
f(r) dr represents the ratio between the pore area of radii r -• r 
+ dr and the total area. Consider a porous slab of thickness hx 
(x -, x 4- hx along the axis). The pore area distribution at the 
two slab sides is identical. For hx >> Rmax, complete random- 
ness of the relative positions of the two slab faces is assumed. 
The probability of pores of radii r -• r 4- dr at x encountering 
pores of radii p '-• p + do at x + Ax is ,, 

a(r, p) = f(r)f(p ) dr dp (8) 

Here no direct connection between the pores r and p does exist 
along the x axis. The other extreme case occurs when hx -• 0. 
Then the correlation between the two slab faces is complete. 
Since we are concerned with the effect of pore changes on the 
hydraulic conductivity, it is more relevant to consider hx to be 
of the same order of magnitude as the pore radii. Then the 
probability of the connection of a pore r -• r + dr to a pore p -, 
p 4- dp is 
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514 MUALEM: UNSATURATED FLOW MODELING 

a(r, p) = G(R, r, p)f(r)f(p) dr dp (9) 

G(R, r, O) is a correction accounting for partial co•relation 
between the pores r and 0 at a given water content O(R). 

The contribution of the actual flow configuration in the slab 
to the hydraulic conductivity cannot be accurately assessed. 
We use, therefore, two simplifying assumptions: (1) there is no 
bypass flow between the slab pores, and (2) the pore configura- 
tion may be replaced by a pair of capillary elements (Figure 1) 
whose lengths are proportional to their radii: 

l•/l• = r/o (1 O) 

The hydraulic conductivity is then found to vary as rp (see 
Appendix 1). If we use a correction factor T(R, r, 0) < 1 to 
account for eccentricity of the flow path (tortuosity factor), the 
contribution of the r -• 0 element to the relative conductivity 
becomes 

d Kr(r, O) 

T(R, r, o)G(R, r, o)ro/(r)/(O) dr do 

f;rnax f••max T(R .... r, p)G(R .... /', p)rp/(r)/(p) dr do rain rain 

(11) 

For a given 0(R) the corresponding Kr(0) is 

Kr(O) = 
rue fn• T(R, r, p)G(R, r, p)rp/(r)/(p) dr do rain rain 

f;m.. f••m•. T(R, r, p)G(R, r, p)rp/(r)/(O) dr do mi rain 

(12) 

Since there exists no procedure for an independent determi- 
nation of T(R, r, O) and G(R, r, 0), we assume with Burdine 
[1953] and M Q that the tortuosity and correlation factors are 
power functions of 0, thus depending solely on R. Hence 

r/(r) dr Of(p) dp 
K•(O) = Sf rnin rain 

f•Rmax f/•emax rf(r) dr p/(p) dp 
Rrnin rain 

1 r/(r) dr 

= S," i__.. • _ (13) 

Applying the capillary law r = C/• and (5) to (13), one 
obtains 

2r 2P 

Fig. 1. A combination of cylindrical tubes used to evaluate the 
hydraulic conductivity of a pair of capillary elemehts. 

K•(O) = Sf dO/q, dO/• (14) 

where n may be positive or negative. Equation (14) is very 
simple and easy to apply. For •(0) given in analytical form, 
Kr(O) can be derived explicitly. For example, introducing in 
(14) the expression used by Brooks and Corey [1964], 

Se -- (l•/•cr) -x (15) 

yields 

gr(s,)-- S, "+•'+vx (16) 

gr(l•)-- (l•l•cr) -2-x(2+n) (17) 

With n = 0, (16) and (17) reduce to the equations obtained by 
Brutsaert [1967], using the CCG model. However, the in- 
clusion of n (which accounts for the correlation between pores 
and for the flow path tortuosity) in (16) and (17) contributes to 
a more flexible formula of Kr(Se) and therefore to a greater 
chance of agreement between theoretical and experimental 
curves. Another example is Farrell and Larson's [1972] for- 
mula 

1• = l•er ea('-se) (18) 

which when it is substituted into (14) leads to 

Kr(S•) = S•"(e ""se - 2e "s• + 1)/(e ""- 2e" + 1) (19) 

It is not clear whether (16) or (19) is in better agreement with 
measured data. Equation (16), however, is easier to use in the 
derivation of analytical solutions of complicated unsaturated 
flows. 

COMPUTED RESULTS 

Before agreement of theory with measurements and com- 
parison with other methods can be examined, the residual 
water content {Dr and the power n of Se ((14)) must be deter- 
mined. The influence of using partial and complete •b-O curves 
on the computed hydraulic conductivity was checked by Kunze 
et al. [1968]. It seems that complete •b-O information improves 
the quality of the prediction mainly as a result of a better 
fulfillment of the requirement that K = 0 for O = {Dr. They 
recommend, therefore, extrapolation of the measured portion 
of the •b-O curve. During the present study we realized that 
because of the strong sensitivity of the computed K(O) curve 
to the value of Or, the decision about which model compares 
more favorably with experimental data of a given soil is, in 
fact, governed by {Dr. For this reason, we think that it is 
necessary to use a standard analytical procedure to fix a value 
of {Dr and to extrapolate a partially given •b-{D curve. We 
propose herein a convenient procedure, based on the assump- 
tion that the soil characteristic curve in the extrapolation range 
can be analytically represented by (15), which fulfils the con- 
dition •b -• Do for O • {Dr. Parameters {Dr and X are computed 
with the aid of a minimum square deviation procedure for 
regression of measured •b-O points to (15) in the range O < Op, 
where Op is the value at which the measured curve shows an 
inflection point (Appendix 2). 

Now if we perform a similar fitting procedure for the Kr(O) 
curve to (14), we can expect to get different values of n for 
different soils. As was already mentioned, the value of n may 
be negative too. Of course, this poses a great difficulty if one is 
interested in a universal Kr(O) representation, valid for all soils. 
As a sort of compromise between both representations, it is 
suggested that an expression be adopted for which the square 
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deviation, averaged over a great number of soils, is minimum. 
In essence, n becomes an experimentally determined parame- 
ter. 

Forty-five soils for which measured ½-O and K-O (or K-C) 
data on drainage are available in the literature were used for 
computation. In Table 1 a list of the soils, their measured 
(•mln, •Pmln, and Omax, the computed Or obtained by using the 
procedure suggested in Appendix 2, and the power 3, of Se are 
given. For each soil the mean square deviation D between the 
measured hydraulic conductivities Krm and the computed ones 
Krc, 

D -- [ln (K,c) -- In (K,m)]" (1 -- • ) (20) e Inin min 

is computed. Eight different values of n were used (substituted 
in (14)): n - -1 + 0.5j, j = 0, 1, ". , 7. In order to maintain 
consistency in the numerical computation of D for all soils we 
have used a constant increment ASe = 0.02. In Table 2 the 
mean value/•, the standard deviation a, and the coefficient of 
variance e for the 45 soils are given as a function of n. The 
continuous graph of/•(n) as plotted in Figure 2 shows that n = 

0.5 may indeed hold as the best value. Hence the suggested 
formula for Kr(S•) becomes 

• I ,.Re I /2 
In practice, we distinguish between the extrapolated region 0 
_< S• ( S• mm (• ( • (Omm), for which an analytical 
expression ((15)) is used to represent the f-S• curve, and the 
measured region S• mm • S• • 1, where the computation is 
carried out numerically. Continuity requires that the extrapo- 
lated curve meet the measured one at (from, S• ram). Thus (21) 
becomes 

• self2 I e in •__-- (22) 

Semin/(1 • 1/•)•mi n • fS dSe/• e rain 

while the WG model ((3)) yields 

TABLE 1. Computed Or and X for the 45 Soils 
Soil 

No. Index References {•max {•min 
•/min• 

cm H•O 

1 

2 

3 

4 

5 

6 

7 

8 

9 

lO 

11 

12 

13 

14 

15 

16 

17 

18 
19 
20 

21 

22 
23 

24 

25 

26 
27 

28 
29 
30 

31 

32 

33 

34 

35 

36 
37 
38 

39 
40 
41 

42 
43 
44 

45 

lOO6 Beit Netofa clay [Rawitz, 1965] 
1101 Shluhot silty Clay [Rawitz, 1965] 
2002 Silt Mont Cenis [Vachaud, 1966] 
2004 Slate dust [Childs and Coilis-George, 1950] 
3001 Wel•l silty clay loam [Jensen and Hanks, 1967] 
3002 Amarillo silty clay loam [Brooks and Corey, 1966] 
3101 Rideau clay loam [Topp, 1971] 
3301 Caribou silt loam [Topp, 1971] 
3302 Grenville silt loam [Staple, 1965] 
3304 Touchet silt loam [Jensen and Hanks, !967] 
3305 Ida silt loam (>15 cm) [Green et al., 1964] 
3306 Ida silt loam (0-15 cm) [Green et al., 1964] 
3307 Touchet silt loam (General Electric 3) [Brooks and Corey 1964] 
3403 Pachappa loam [Jackson et al., 1965] 
3404 Adelanto loam [Jackson et al., 1965] 
3405 Indio loam [Gardner, 1959] 
3407 Guelph loam [Elrick and Bowman, 1964] 
3501 Rubicon sandyløam [Topp, 1969] 
3503 Pachappa fine sandy clay [Elrick and Bowman, 1964] 
3504 Gilat sandyloam [Hadas, 1967] 
4106 Sand [PoulOVassilis, 1970] 
4107 Sand [Poulovassili s, 1970] 
4109 Botany sand fraction (150-300 •m) iWatson, 1967] 
4111 River sand (screened) [Jensen and Hanks, 1967] 
4114 Volcanic sand [Jensen and Hanks, 1967] 
4116 Sand fraction (150-300/•m) [Kastelanek, 1971 ] 
4118 Sable de rivi•re [Vachaud, 1966] 
4120 Gilatrinesand [Rawitz, 1965] 
4121 Rehovot sand [Hadas, 1967] 
4123 P0uder River sand [Brooks and Corey, 1966] 
4126 Molonglo River sand [Talsma, 1970] 
4129 Beit Dagan sand [Rawitz, 1965] 
4130 Hygiene sandstone [Brooks and Corey, 1964] 
4131 Berea sandstone [Brooks and Corey, 1964] 
4132 Fragmented Fox Hill sandstone [Brooks and Corey, 1964] 
4133 Fine sand (General Electric 13) [Brooks and Corey, 1964] 
4134 Volcanic sand [Brooks and Corey, 1964] 
4137 Sand fraction (150-300•tm) [Watson, 1967] 
4141 Sand fraction (1.0-0.5 mm) [Childs and Coilis-George, 1950] 
4142 Sandfraction(0.5-0,25 mm) [Childs and Collis-George, 1950] 
4143 Fragmented mixture [Brooks and Corey, 1964] 
4147 Plainfield sand (25-60 cm) [Black et al., 1969] 
5002 Glass beads [Brooks and Corey, 1964] 
5003 Aggregated glass beads [Topp and Miller, 1966] 
5004 Monodispersed glass beads [Topp and Miller, 1966] 

0.446 
0.385 

0.447 

0.482 
0.470 
0.455 
0.416 

0.441 
0.475 

0.480 
0.530 
0.554 
0.469 

0.456 
0.426 
0.450 

0.520 
0.381 
0.334 
0.440 
0.272 
0.258 

0.350 
0.400 
0.350 
0.372 
0.342 

0.179 
0.400 
0.364 
0.277 
0.161 

0.250 
0.206 
0.503 
0.356 

0.365 
0.350 
0.357 

0.364 
0.437 
0.307 
0.383 

0.548 
0.326 

0.241 
0.163 

0.042 
0.110 

0.140 
0.140 
0.286 
0.313 
0.037 
0.170 
0.175 

0.219 
0.180 
0.007 
0.012 

0.021 

0.236 
0.166 
0.049 
0.130 

0.090 
0.084 
0.055 

0.060 
0.050 
0.045 
0.075 
0.070 
0.020 
0.044 
0.098 
0.052 
0.151 

0.064 

0.166 
0.063 
0.058 
0.056 
0.034 
0.040 

0.134 
0.060 
0.037 

0.080 
0.033 

1.51 X 104 

1.51 X 104 
1.70 X 105 
1.44 X 102 

2.12 X 102 
2.25 X 102 
4.19 X 102 
4.25 X 102 
1.00 X 10 ø 
2.35 X 102 
2.00 X 10 a 
2.00 X 10 a 
4.14 X 102 
3.19 X 10 ø 
4.65 X 106 
1.50 X 106 
1.00 X 10 a 
2.40 X 102 
1.50 X 10' 
1.02 X 10 a 
3.60 X 10 • 
3.80 X 10 • 
5.70 X 10 • 
1.50 X 102 
1.85 X 102 
8.00 X 10 • 
1.90 X 102 
1.51 X 10 • 

2.50 X 10 a 
. 

8.20 X 10 • 
3.00 X 10 • 
1.49 X 10 • 
2.01 X 10 •' 

2.34 X 10 •' 
1.16 X 102 

3.02 X .102 
2.73 • 107 
5.70 • 10 • 
3.64 • 10 • 
4.40 X 10 • 
1.07 • 10 •' 
2.05 • 102 
3.01 • 102 
8.26 • 10 • 
6.82 X 10 • 

0.010 
0.010 
0.010 
0.090 

0.090 
0.110 
0.280 
0.280 
0.010 
0.120 
0.060 

0.010 
0.130 
0.002 
0.007 
0.010 
0.130 

0.150 
0.030 
0.010 
0.010 
0.010 
0.040 
0.050 
0.040 
0.040 
0.060 
0.010 

0,015 
0.030 
0.010 
0.040 
0.140. 
0.050 
0.160 
0.050 

0.050 

0.050 
0.020 
0.030 
0.120 
0.050 
0,030 
0.060 
0.020 

0.19 
0.20 

0.36 
5.69 
1.52 
2.35 
1.62 

0.91 
0.34 
1.71 

0.38 
0.27 
1.89 
0.42 
0.50 

0.81 
0.41 
2.08 
0.44 

0.44 
1.83 
2.87 
8.35 
1.57 

1.30 
4.94 
0.92 
0.27 
0.83 
2.92 
0.96 
0.37 
3.78 
2.13 
2.61 
1.98 
1.65 

11.67 

2.80 
5.69 
2.65 
1.45 
1.90 
3.57 
6.24 

O .... Omin, and 19r are given in percent of total volume. 
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TABLE 2. Computed D, a, and e for Eight Values of n Obtained by Using (14) 

- 1.0 - 0.5 0.0 0.5 1.0 1.5 2.0 2.5 

15 = •']Dd45 1.40 1.18 1.01 0.97 1.09 1.32 1.62 1.94 
a = [(Dr-/5)2/45] •/2 0.73 0.70 0.75 0.82 0.89 0.96 1.04 1.58 
• = a/I5 0.52 0.60 0.74 0.84 0.81 0.72 0.64 1.13 

2 fS $e Semin/(1 + 2/X)•P,,,i,• -I- dS./• 2 
= s. • ' •" (23) 

S .... i•/(l + 2/X)•,,,•, + dS./• • 
e rain 

Instead of presenting the MQ formula based on the CCG 
model in the form of finite sums, as is usually done in the 
literature, we believe that it is worthwhile to present the K•(S,) 
relationship in terms of integrals for several reasons: (1) we 
can compare different formulae in an easier way, (2) if analyti- 
cal relationships between • and S, are available, the K-S, 
relationship may also be obtained in a closed form, and (3) the 
computer permits use of a variety of procedures for replacing 
integrals by finite sums. This latter argument is of extreme 
importance, as will be shown later. For this reason, we have 
elaborated the CCG model (see Appendix 3) to obtain a final 
compact integral form of the K-O relationship: 

K•(O) = &" 

fo / fo ø"st ß (0 -- O) dO/•l? (O,,,t -- O) dO/•l," (24) 

Using a = 4/3 and (15) to express the •-Se dependence on the 
extrapolated portion, we have 

I min S 2 Kr(Se)__ Se4/3 l (._Se.W.e .'e.mi.n__ • 
x•+5)• 2+2/x/ 

+ (s, - s) ds/• • 
e i !1 

ß T.Z '¾ 5'?x - 2 + 2/x/ 

+ (• - s) ds/• (25) 
e m i n 

which is the equivalent formula for the MQ model. Parameters 
0 and s (in (24) and (25)) are demivariables representing the 

2.0 

1.8 

1.6 

1.0 •- %+...•. +• 

0.6 I I I I I 
-I.0 - 03 0.0 03 1.0 

I I I 
1.5 2.0 2.5 • 

Fig. 2. Computed/5 based on 45 soils as a function of the power n 
(see (14)). 

effective water content and the effective saturation, respec- 
tively. 

The numerical procedure used in this study is based on the 
assumption that the measured •p-Se curve can be very closely 
approximated by a continuous polygon, i.e., that •p can be 
expressed by 

• = •,- (•,- (S,,+•- S,,) (S,- S,,) (26) 
S,i _< S, < S,i+• 

In this case we are not limited to using constant intervals, the 
node points are conveniently chosen with regard to the curva- 
ture of the given graph, and the computation of Kr(S,) is 
accurately performed. When (26) is used, (22) becomes 

Kr(S,) = S,'/2{[S, min/(l + l/X)•min 
ß •, •,+• / !n 

while the WG and the modified MQ model ((23)and (2•)) 
yield 

K•(S,) = S,'{[S, min/(l + 2/X)•min' 
, J •i +1 So rain/(1 + 2/X)•min 2 

+ 1 • Sei+l -- Sell} --I .... (28) 

and 

Kr(S,) = S, 4/3• 
1 + 2/x 

Se rain •2 
2 + 

• I Si+• • Si + S, 

( si+! '-_ ..s.,_. 
+ '•// •///+ I lB 

+ 

Se min •2 I • si • 1 1 ( s,_.+• -- si ) 
,. )+ (,,.+:-_ :: ). (29) 
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respectively. In the following the suggested model ((27)), as 
well as the models of Averjanov, WG, and MQ ((1), (28), and 
(29), respectively), will be compared with the experimentally 
measured data. 

In Table 3 the deviation D between the measured Kr(Se) 
curves and the computed ones (using the proposed method 
and the three methods mentioned above) is given for each one 
of the 45 soils. The italicized values indicate the model which 

yields the minimum deviation between the measured curves 
and the forecasted ones. The average value D for all 45 soils, 
the standard deviation a, and the coefficient of variance e are 
given in the last three lines of the table. It may be seen that for 
various soils, best results are achieved by different methods. 
This can also be concluded from Figures 3a-3p, in which the 
computed results are shown for a sample of 16 soils. On the 
other hand, comparison between the different models on an 
overall basis shows that best results are achieved by the pro- 
posed model. This is reflected by the number of soils for which 
D is minimum (see Table 3 and Figures 3f, 3g, 3j, and 3m-3p) 
and by the computed average value D for the 45 soils. 

Very often the agreement of Averjanov's model with the 
experimental data is quite poor (as it is in soils 1006, 3302, 
3305, 3306, 3403, 3404, 3405, and 3407; see also Figures 3a and 
3c-3f), while in some cases (soils 2002, 4121, and 4126; see 
Figures 3b and 3/) a definite improvement in results is achieved 
by this method as compared with the other three. It seems, 
therefore, that the.•b-0 curve includes some inherent character- 
istic properties of the soil, which the generalized K ozeny- 
Averjanov-lrmay approach ignores. One may conclude, how- 
ever, that Averjanov's model fits sands well, while it fails to 
describe the Kr-O relationship accurately for heavier soils. Yet 
the Averjanov-lrmay type of equation, with adjustable power, 
is an expression that has been proved to be very convenient in 
the analytical solution of partly saturated flow problems. It 
might be possible to improve prediction of K(O) by adjusting 
the power for tortuosity and for X (as was done by Brooks and 
Corey [1964] or as shown here in (16)). 

Among the other three models the WG model yields the 
poorest results. For soils in which dO/d•b • 0 as • • 0, there is 
an abrupt fall of the computed hydraulic conductivity near 
saturation (Figures 3b, 3d, 3e, 3h-31, and 3n). For some soils 
these computed results are justified by the experimental data 
(Figure 3e), but in most cases the contrary is sustained, since 
the observed drop is milder. 

Finally, we believe that there is a good chance of improving 
the prediction of K•(O) by developing procedures which cir- 
cumvent some of the existing limitations. One might neglect 
the measured data of •-O near saturation and fix a Clear air 
entry value. Another modification is the derivation and use of 
an experimental correlation between the value of n in the 
power function ((1)) and some physical parameters of the 
soils. 

SUMMARY AND CONCLUSIONS 

The new model for prediction of K•(©), proposed herein, is 
based on a reasonable approximate evaluation of the hydraulic 
conductivity of a pore domain with varying shape. The KA©) 
expression is derived in a simple integral form. Thus in cases 
where the •-© dependence is given by analytical formulae, 
K•(O) can be reduced to a closed form. Very rarely is the 
curve measured in the whole range. Hence in order to make 
the various models more practical tools an analytical pro- 
cedure is suggested for the determination of the residual water 
content and the extrapolation of the •-© curve into the range 
for which no measured data are available. 

The presentation of the CCG model is modified to derive a 
compact integral formula instead of its usual form in finite 
sum. This improvement enables us to use the same modified 
procedures in applying the various models and therefore to 
perform a more reliable comparison among the models. 

For computational benefit the measured •b-O curve is re- 
garded as a continuous polygon connecting the given (•b, O) 
points. This approximation enst•res an accurate computation 
of Kr(Se) without truncation errors (which are quite significant 
for values of •b near zero). 

The proposed model, as well as the three main existing 
models of Averjanov, MQ, and WG, is compared with mea- 
sured data of various soils. Since this test is carried out against 
data the accuracy of which is undetermined, 45 soils of differ- 
ent types are considered to ensure solid conclusions. It is 

TABLE 3. Deyiation D Between the Measured and Computed 
Kr(Se) Obtained by Using the Models of Averjanov, WG, and MQ 

and the Proposed Model 

Soil Proposed 
No. Index Averjanov WG MQ Model 

I 1006 1.94 0.20 
2 1101 1.26 0.74 
3 2002 1.72 6.0 l 
4 2004 0.22 0.14 
5 3001 1.08 0.37 
6 3002 0.51 0.36 

7 3101 0.59 !.01 
8 3301 0.59 2.44 
9 3302 5.67 1.07 

10 3304 0.63 0.49 
11 3305- 5.12 1.13 
12 3306 6.11 2.36 
13 3307 0.46 0.33 
14 3403 4.38 1.38 
15 3404 4.87 2.82 
16 3405 5.46 1.00 
17 3407 1.96 0.82 
18 3501 0.42 0.86 
19 3503 2.18 4.33 
20 3504 2.66 2.93 
21 4106 0.50 1.00 
22 4107 0.38 0.62 
23 4109 1.12 0.88 
24 4111 1.13 2.03 
25 4114 1.18 0.92 
26 4 i 16 0.55 0.54 
27 4118 0.52 1.19 
28 4120 0.66 0.80 
29 4121 0.27 3.53 
30 4123 0.80 0.70 
31 4126 0.28 2.15 
32 4129 0.88 2.65 
33 4130 0.14 0.24 
34 4131 0.56 0.43 
35 4132 2.85 3.53 
36 4133 0.37 0,41 
37 4134 0.31 0.35 
38 4137 0,53 0.28 
39 4141 1,38 1.60 
40 4142 0.65 0,99 
41 4143 0.52 0.73 
42 4147 0,71 0.50 
43 5002 0.91 0.98 
44 5003 0.61 0.69 
45 5004 0.90 0.80 
/J 1.49 1.32 
a 1.64 1.22 

• = a/D 1.10 0.93 

0.24 
0.76 

4.38 
0.19 
0.23 

0.25 
1.18 
1.48 

1.69 

0.58 

1.28 
1.26 
0.44 
1.15 
1.59 
2.23 
0.44 

1.04 

2.01 
1.61 
1.03 

0.71 
1.18 
1.82 
0.59 
0.60 
1.73 

1.02 
2.77 
0.53 
1.21 

2.65 
0.26 

0.34 
3.66 
0.36 
0.56 
0.53 
1.71 
0.62 

0.92 
0.70 
1.12 

1.04 
1.04 
1.17 
0.88 
0.75 

0.29 
0.64 
•4.17 
0.40 
0.76 
0146 
0.58 

1.22 

1.72 
0,42 

1.34 
1.34 
0.38 
0.94 
1.33 
2.18 
0.25 
0.40 
2.25 
1.67 
0.65 

0.30 
0.56 
1.01 
0.77 
0.97 
0.86 
0.79 
2.41 

0.97 
1.22 
2.26 

0.27 
0.62 
2.91 
0.44 
0.30 
0•16 
0.93 
0.91 

0.41 
0.37 
0.43 
0.21 
0.30 
0.97 
0.82 
0.84 

The italicized values indicate the model which yields the minimum 
deviation between the measured curves and the forecasted ones. 
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shown that the proposed model is more reliable than the 
existing models and clearly improves the prediction of unsatu- 
rated hydraulic conducti•,ities. 

APPENDIX 1' HYDRAULIC CONDUCTIVITY 

OF THE CAPILLARY ELEMENT 

In most of the rational models for predicting K one consid- 
ers the conductivity of a pair (or a series) of capillary elements. 
Relying on Poiseuille's equation, Childs and Coilis-George 
[1950] assumed that the conductivity is determined by the 
radius of the narrower element, whereas Wyllie and Gardner 
[1958] used a reduced pore radius. Here a different relation- 
ship is adopted, based on the pore configuration shown in 
Figure 1. 

To simplify matters, we disregard special effects and assume 
that each capillary in Figure 1 obeys the Poiseuille equation, 
i.e., 

4 

•rr4g dc• •rr g 
Q• = 8• dx Q •' = 8• dx (A 1) 

where ½ = • + z is the head, •, is the liquid kinematic viscosity, 
and Q is the discharge. For this combination in series, the total 
head loss is 

while the discharge is 

A½ = A½• + Aq%. (A2) 

Q = Q• = Q: (A3) 

If the element of Figure 1 is replaced by an equivalent tube 
of radius R and length L. then the discharge relationship yields 

]{4 A½/L = P Aqbl/l• = p4 A½:/I•. (A4) 

while equivalency of volumes gives 

RaL = •11 + p•la (A5) 

Assuming moreover that the lengths are proportional to the 
radii [Fatt, 1956], 

l•/l• = r/p (A6) 

we obtain 

R • = rp (A7) 

This means that the 'large pore' has a more important influ- 
ence than is generally assumed. The reason is, of course, that 
we have taken into account its length and not only its cross 
section. 

APPENDIX 2: PROCEDURE FOR DETERMINATION OF {Dr 

AND THE EXTRAPOLATED I•-{D CURVE 

The determination of {Dr is a prerequisite for using any of 
the methods suggested for predicting the K-{D relationship. We 
define {Dr as the residual water content for d{D/&k • 0 for {D • 
{Dr because it fulfils the other basic requirement that K({Dr) = 
0. Very often, only part of the •-{D curve is measured, {Dr is an 
unknown parameter, and it is not clear how to extrapolate the 
measured curve. This problem becomes embarrassing when 
comparisons of various models with measurements are stud- 
ied, because just by choosing {Dr we may improve or worsen 
one method in relation to the others. There is an intense need 

for an objective analytic procedure for extrapolating the mea- 
sured •k-{D curve. 

In this work, (15) is adopted to represent the extrapolated 
part of the •-{D curve. Demanding that the extrapolated curve 
should pass through the measured last point (•ml,, {Dmin) leads 
to 

Se'rnin -- Omin_ Or = (AS) 
or 

In (•m,./•k) = X -• In (S,/S, Era) (A9) 

On a log scale. (9) describes a straight line. As a matter of 
convenience we define 

y = In (•mln/•) X = In (S/Smln) (A10) 

Since the extrapolated curve should match the measured one, 
we demand that the dispersion of the measured points, up to 
the inflection • point (Om• < • < •), around the analytic 
curve (A9) should be minimum. The sum of the square devia- 
tion of the measured data from the analytic curve is 

N 

d = • [y, -- y(xi)] • 
1 

= • y, -- •y,x, +•x, • (All) 
and requiring d to be minimum (ad/aA = 0), one obtains 

X = • In S. ln(•i,•ln S. / , x (A12) 
and 

N • (•min• 2 • • 1• (•min• lB ( 
, in (Al) 

If we assume a series value Orj '- 0.01/, j = 1, 2, '. ', up to 
{Dm•,, the corresponding Xj and dj are obtained by using (A 12) 
and (A13). The residual water content {Dr is chosen as the 
value of {Dr• which yields the minimum value of d•. 

APPENDIX 3: MODIFIED FORMULATION 

OF THE CCG MODEL 

The basic equation suggested by Childs and Coilis-George 
[1950] as set forth by Brutsaert [1967] is 

'ø=R fr •=ø K(R) = M j r2](p)](r) dr dp p R in •=R min = m 

+ M p"f(r)/(p) dp dr (A14) 
p R i n •P • m 

It is obvious that the integration is carried over the square 
domain OABC in the (r, p) plane (Figure 4). The first integral 
(left-hand side) of (A14) is carried over the triangle OBC, and 
the second integral over the complementary triangle OAB. By 
a change in the order of integration, 

•,-e •r=, r2f(p)f(r) dr dp p R in =R min = m 

frr,=R fpp=R = r9'/(r)/(p) dp dr 
:=R min 

(A15) 
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/ 
A 

R 

Fig. 4. Description of the integration domain of (A14). 

and a change of variables, 

r==R fpp==R f, r2/(r)f(p) dp dr r /i• in w m 

-- p2/(p)/(r) dr dp (A16) 
in 

it follows that the two integrals of (A 14) are identical. Hence 

K(R) = 2M pef(p)f(r) dr dp 
in ß r==p 

p=R --- 2M pe/(p) /(r) dr dp (A17) 
p== R rain 

By definition, we have 

f,R f(r) dr = O(R) (A 18) /•min 

and substituting in (A17) we obtain 
0 

By matching at saturation, the CCG formula can be written as 

The formulae of Millington and Quirk [1961] and Kunze et al. 
[1968] may be written similarly by multiplying the right-hand 
side of (A19) by Se '•, with n = • and n = 1, respectively. 

NOTATION 

a probability. 
f(r) pore water distribution function. 

G correlation factor. 

K hydraulic conductivity. 
Kr, K,c relative hydraulic conductivity and computed 

value of 
I index. 

L, l length. 
m index. 

n constant power. 

• R, r radius. 
Se, Se mln effective saturation and minimum effective sat- 

uration. 

T tortuosity factor. 
a,/• constant power. 

©, ©r actual and residual water content. 
•}max, •}mln measured maximum and minimum values of 

O. 

0 = © - ©r, effective water content. 
t> radius. 
•b capillary head. 

•kc, capillary head at which dO/&k > O. 
•mln minimum measured value of 
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